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Abstract
We consider a plane polynomial vector field P(x, y) dx +Q(x, y) dy of degree
m > 1. With each algebraic invariant curve of such a field we associate a
compact Riemann surface with the meromorphic differential ω = dx/P =
dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant
curve is found. In the smooth case this estimate has already been found by
Cerveau and Lins Neto in a different way.

AMS classification scheme number: 34C07

Introduction

The study of plane polynomial vector fields goes back at least to Poincaré [12]. Recall that
the second half of Hilbert’s 16th problem [8] asks for an upper bound on the number of limit
cycles of real plane polynomial vector fields. Notice that the class of invariant curves of the
given planar system involves the class of its limit cycles. Of course, every limit cycle is also
an invariant curve.

This paper is devoted to one aspect of this problem: to study algebraic invariant curves, i.e.
defined by an algebraic equation f (x, y) = 0, where f ∈ C[x, y] is an arbitrary polynomial.
The real part of the above curve, which turns out to be a limit cycle, is called the algebraic
limit cycle. Until now only a few cases of algebraic limit cycles have been known, especially
for quadratic plane systems [3]. It has been shown by Darboux [4] that if a given planar
polynomial system of degree m has more than 2 + [m(m + 1)]/2 algebraic invariant curves,
then it admits a rational first integral.

In this paper we apply a new method connecting the problem of existence of algebraic
invariant curves of plane polynomial vector fields of the form P(x, y) dx + Q(x, y) dy
with the contemporary theory of Riemann surfaces. With each algebraic invariant curve
of such a field we associate a compact Riemann surface C and a meromorphic differential
ω = dx/P = dy/Q.

Using this approach, in section 5 we find the asymptotic estimate of the degree of an
arbitrary algebraic invariant curve (theorem 6). In the particular case we obtain the estimate
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664 A Tsygvintsev

for a degree of a nodal algebraic invariant curve (corollary 3). It is shown too that an arbitrary
smooth algebraic invariant curve has a degree less than m + 2 (theorem 2) and that for an
arbitrary algebraic invariant curve its genus is a linear function of the degree (theorem 5).
These results have already been obtained (in a completely different way) in papers [1, 2].

1. The Darboux divisor and points at infinity

Consider the system of differential equations

ẋ = P(x, y) ẏ = Q(x, y) (x, y) ∈ C
2 (1)

where P,Q are polynomials of degree m > 1. We suppose that P and Q have not a
common nonconstant polynomial factor and P = ∑m

i=1 Pi , Q = ∑m
i=1 Qi , where Pi , Qi

are homogeneous polynomials of degrees i = 0, . . . , m.
Let C = {(x, y) ∈ C

2 : f (x, y) = 0} be an invariant curve of (1). Without loss of
generality we may suppose that f ∈ C[x, y] is irreducible. Then ḟ = (P

∂f

∂x
+ Q

∂f

∂y
)f=0 ≡ 0.

As the ideal 〈f 〉 is radical, then ḟ ∈ 〈f 〉 and hence ḟ = kf , for some k ∈ C[x, y].

Definition 1. The polynomial f (x, y) ∈ C[x, y] is called an algebraic partial integral of the
system (1) if there exists a polynomial k ∈ C[x, y] such that

P
∂f

∂x
+ Q

∂f

∂y
= kf. (2)

The polynomial k is called a cofactor and has the form k = ∑m−1
i=1 ki , where ki are homogeneous

polynomials of degrees i = 0, . . . , m − 1. If k ≡ 0 then f (x, y) = const is a first integral of
the system (1).

Remark 1. It is easy to see that if f (x, y) is reducible, i.e. f = f
m1
1 · · · f ml

l , where
fk ∈ C[x, y], k = 1, . . . , l, then polynomials fk are again partial integrals of the system (1).

The polynomial f is a sum of its homogeneous parts f = ∑n
i=a fi , where fi are

homogeneous polynomials of degrees i = 0, . . . , n and n = deg(f ).
Consider the homogeneous polynomial Rm+1(x, y) of degree m + 1 defined by

Rm+1(x, y) = xQm(x, y) − yPm(x, y) (3)

where Pm and Qm are higher homogeneous parts of the polynomials P and Q respectively. Let
us suppose that Rm+1 does not vanish identically, then it has m+ 1 zeros Di = [xi : yi] ∈ CP

1,
i = 1, . . . , m + 1. By the suitable rotation of variables x, y we can obtain xiyi 
= 0,
i = 1, . . . , m + 1. Hence, without loss of generality, Di = (1, zi), zi ∈ C

2, zi 
= 0,
i = 1, . . . , m + 1.

Definition 2. The formal sum of points D = ∑m+1
i=1 Di is called the Darboux divisor of the

differential system (1).

Notice that the important role of the points Di for polynomial vector fields first was
observed by Darboux in 1878.

Let

V (x, y) = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y

be the polynomial vector field on C
2 corresponding to the system (1). Through the nonlinear

change of variables

u = 1

x
v = y

x
x 
= 0 (u, v) ∈ C

2
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and multiplying the induced vector field by um−1 we obtain [5, 6]

Ṽ (u, v) = A(u, v)
∂

∂u
+ B(u, v)

∂

∂v

A(u, v) = −um+1P

(
1

u
,
v

u

)

B(u, v) = um

[
Q

(
1

u
,
v

u

)
− vP

(
1

u
,
v

u

)]

where Ṽ (u, v) represents the vector field of (1) near the line at infinity L∞ = {u = 0}. The
point (0, v0) where Ṽ (0, v0) = (0, 0) is the singular point of Ṽ (u, v). It is easy to see that
Rm+1(1, v0) = 0 and we obtain the following proposition.

Proposition 1. The points Di = (1, zi) ∈ D, i = 1, . . . , m + 1, are the singular points at
infinity of the system (1).

The equation (2) turns into

A(u, v)
∂F

∂u
+ B(u, v)

∂F

∂v
= K(u, v)F

where F(u, v) = unf ( 1
u
, v

u
) = fn(1, v) + ufn−1(1, v) + · · · = 0 represents the curve C near

L∞ and

K(u, v) = um−1k

(
1

u
,
v

u

)
− umnP

(
1

u
,
v

u

)
.

Let us show now that the Darboux divisor D contains all possible points at infinity of any
algebraic invariant curve of the system (1).

Denote by L∞ = {[xi : yi : 0] : (x, y) ⊂ CP
1} ⊂ CP

2 the line at infinity. Let If be a set
of points at infinity of the algebraic curve C which correponds to the equation f (x, y) = 0,
where f (x, y) is an algebraic partial integral of the system (1).

Theorem 1. If ⊂ D.

Proof. By considering the right- and left-hand homogeneous parts of (2) we find

Pm

∂fn

∂x
+ Qm

∂fn

∂y
= km−1fn (4)

wherefn is the highest-order term of the polynomialf = ∑n
i=a fi and km−1 is the highest-order

term of the cofactor k = ∑m−1
i=1 ki .

To show If ⊂ D we need to prove that if fn(x0, y0) = 0 then (x0, y0) ∈ D or

Rm+1(x0, y0) = 0 (5)

where the polynomial Rm+1 is defined by (3).
Consider the linear change of variables (x, y) → (u, v): x = x0 + u, y = y0 + v. The

polynomial fn(x, y) turns into the polynomial F(u, v) = fn(x0 + u, y0 + v), which has the
following Taylor expansion:

F(u, v) =
n∑

i=r

Fi(u, v) (6)

where Fi are homogeneous polynomials of degrees i = r, . . . , n, r � 1 and

Fi = 1

(n − i)!

(
x0

∂

∂u
+ y0

∂

∂v

)n−i

fn(u, v).
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Thus, for the lower-order term Fr of the sum (6) we have Fr 
≡ const and the following identity
is fulfilled:

x0
∂Fr

∂u
+ y0

∂Fr

∂v
= 0. (7)

The equation (4) takes the form(
(c1 + N1(u, v))

∂

∂u
+ (c2 + N2(u, v))

∂

∂v

)
(Fr + · · · + Fn) = 0 (8)

where

c1 = Pm(x0, y0) − x0

n
km−1(x0, y0) c2 = Qm(x0, y0) − y0

n
km−1(x0, y0) (9)

are constants and N1(u, v), N2(u, v) are polynomials such that N1(0, 0) = N2(0, 0) = 0.
Two cases should be considered:

(1) c1 = c2 = 0. Then from relations (9) it follows that the equality (5) is fulfilled. Hence
(x0, y0, 0) ∈ D.

(2) (c1, c2) 
= (0, 0). Then one can show from (8) that c1
∂Fr

∂u
+ c2

∂Fr

∂v
= 0. Using (7) we see

that vectors (c1, c2) and (x0, y0) are collinear, i.e.

det

(
c1 x0

c2 y0

)
= 0

which gives again the equality (5).

�

Corollary 1. Let D = D1, . . . , Dm+1 be a Darboux divisor of the system (1) and li = aix+biy,
ai , bi ∈ C, i = 1, . . . , m + 1, be a set of linear forms such that li(Di) = 0, i = 1, . . . , m + 1.
Then there exist non-negative integers n1, . . . , nm+1,

∑
ni = n such that

fn(x, y) =
m+1∏
i=1

l
ni

i (x, y). (10)

Notice that the same expression for fn was introduced first by Jablonskii [9] in the case m = 2,
see also [10].

2. The smooth case

Let C ⊂ CP
2 be an algebraic smooth curve of deg(C) = n satisfying the equation f (x, y) = 0

where f (x, y) is an irreducible algebraic partial integral of the system (1). Without loss of
generality we suppose that

f (x, y) = yn + a1(x)y
n−1 + · · · + an(x) ai(x) ∈ C[x] i = 1, . . . , n.

Consider the holomorphic mapping φ : C → CP
1 defined by φ(x, y) = x.

Let ν = νφ(P ) be a multiplicity of φ at the point P ∈ C. Consider the raminification
divisor R = ∑

p∈C(νφ(P ) − 1)P ⊂ Div(C).
We break R into two divisors R = R1 + R2, where

R1 =
∑

P∈C∩L∞

(νφ(P ) − 1)P

contains branching points of φ at infinity and

R2 =
∑

P∈C/L∞

(νφ(P ) − 1)P

contains all finite branching points.
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Lemma 1. Let C = {f (x, y) = 0} ⊂ CP
2 be a nonsingular algebraic curve of deg(C) = n

where f (x, y) is a partial first integral of the system (1). Then

deg(R1) � n − 1.

This statement is proved by noting that f = fn + · · · + f0, degfk = k and fn =∏m
i=1 L

ni

i (x, y) where
∑m

i=1 ni = n, m � n, Li(x, y) are linear homogeneous polynomials.

Lemma 2.

deg(R2) = n2 − n + 1 − deg(R1). (11)

Proof. Denote g = genus(C), n = deg(C), then by the well known formula for a nonsingular
curve C we have g = (n−1)(n−2)

2 .

By the Riemann–Hurwitz formula we obtain g = deg(R)

2 − n + 1. Comparing these two
expressions for g we find (11). �

Now let us study the divisor R2.
If K = (x0, y0) ∈ R2 then ∂f

∂y
(K) = 0 by the definition of a branching point. With the

help of (2) we obtain

P(K)
∂f

∂x
(K) + Q(K)

∂f

∂y
(K) = 0. (12)

Lemma 3. If the curve C is nonsingular, deg(C) = n, then

deg(R2) � mn

where m > 1 is the degree of the system (1).

Proof. Since K is a smooth point the relation (12) holds(
f,

∂f

∂y

)
K

� (f, P )K K ∈ R2

where (g, l)X denotes the intersection number of the curves g(x, y) = 0 and l(x, y) = 0 at
the point X ∈ g ∩ l. One can easily verify that deg(R2) = ∑

P∈R2
(f,

∂f

∂y
)P . Thus, by Bézout’s

theorem deg(R2) � mn. �

Theorem 2. Let us assume that the system (1) admits an smooth algebraic invariant curve
C ⊂ CP

2 defined by the equation f (x, y) = 0, deg(f ) = n. Then

n � m + 1

where m > 1 is the degree of the system (1).

The statement of the theorem follows immediately from the above three lemmas. The
theorem 2 was obtained for the first time in [2] using a different method. It was shown by
Moulin-Ollagnier that the same result can be obtained in the theory of the Koszul complexes
of polynomial vector fields.
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3. The Weierstrass polynomials

Let X = (x0, y0) ∈ C
2 be a finite singular point of the curve C = {(x, y) ∈ C

2 : f (x, y) = 0},
i.e. the point X at which ∂f

∂x
(X) = ∂f

∂y
(X) = 0. Without loss of generality we suppose

X = (0, 0).
In order to clarify the local structure of C near X, we shall need the help of the Weierstrass

polynomials [7n7].
Let C{x} (C{x, y}) represent the ring of holomorphic functions defined in some

neighbourhood of 0 ∈ C ((0, 0) ∈ C
2).

Definition 3. w ∈ C{x, y} is said to be a Weierstrass polynomial with respect to y, if

w = yd + c1(x)yd−1 + · · · + cd(x) cj (x) ∈ C{x} cj (0) = 0 j = 1, . . . , d.

Let us assume that C is irreducible and its affine equation is

f (x, y) = yn + a1(x)y
n−1 + · · · + an(x) = 0.

Theorem 3. The polynomial f (x, y) can be expressed as

f = uf1f2 · · · fp

where fi(x, y) = ydi + ci1(x)y
di−1 + · · · + cidi

(x), i = 1, . . . , p, are irreducible Weierstrass
polynomials and u(x, y) is a unit of C{x, y}, i.e. u(0, 0) 
= 0.

There exist the open discs -i = {τ ∈ C : |τ | < ρi}, i = 1, . . . , p, such that each equation
fi(x, y) = 0, i = 1, . . . , p defines holomorphic mapping qi : -i → C as follows:

τ → (τ di , gi(τ )) where gi(τ ) =
∞∑
k=1

cikτ
k ∈ C{τ } i = 1, . . . , p. (13)

Thus, from a topological point of view, the algebraic curve C can be obtained near the
singular point X = (0, 0) from several open discs by identifying them together at their centres.
This is the concept of normalization [7].

Theorem 4. Let C = {(x, y) ∈ CP
2 : f (x, y) = 0} be an algebraic invariant curve of the

system (1) and X = (x0, y0) be a singular point of C. Then X is an equilibrium point of the
system (1).

Proof. Let us assume that X = (x0, y0) is not an equilibrium point of the system (1). Then it
has the unique solution passing through this point

x = x0 + P(x0, y0)t +
∞∑
i=2

ait
i y = y0 + Q(x0, y0)t +

∞∑
i=2

bit
i ai, bi ∈ C (14)

where t ∈ - = {t ∈ C : |t | < ρ} for any small ρ ∈ R.
On the other hand X is the singular point of C and according to theorem 3 the system (1)

has no less than p > 0 different solutions passing through X and locally expressed by (13).
Thus, we obtain p = 1 and the solution (14) is the parametrization of the curve C near the
singular point X. By our assumption X is not an equilibrium point of (1), i.e. P(x0, y0) 
= 0
or Q(x0, y0) 
= 0. Hence, looking at (14), X is the smooth point of C. We obtain the
contradiction. �

Corollary 2. The number of finite singular points of an arbitrary algebraic invariant curve of
the system (1) is not greater than m2. Furthermore, if Pm(x,y)

Qm(x,y)

≡ x

y
, then

|Sing(C)| � m2 + m + 1.

Indeed, if Pm(x,y)

Qm(x,y)

≡ x

y
then the polynomial (3) is not equal to zero identically and according

to corollary 1 the curve C cannot have more than m + 1 singular points at infinity.
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4. The genus of C

Let C be an algebraic invariant curve of the system (1) defined by the equation f (x, y) = 0.
Denote by Sing(C) the set of its singular points. There exists the compact Riemann surface C̃

with a surjective continuous map π : C̃ → C such that π : C̃/π−1(Sing(C)) → C/Sing(C)

is a holomorphic bijection. The aim of this section is to calculate the genus of C̃, which is also
called the genus of the curve C. Consider the following meromorphic differential on C:

ω = dx

P
= dy

Q
. (15)

Let ω be its divisor, then according to the Poincaré–Hopf formula

2g − 2 = deg(ω). (16)

On the other hand, by Noether’s formula [8, 11]

g = (n − 1)(n − 2)

2
−

∑
X∈Sing(C)

δ(X) (17)

where the numbers δ(X) are given by

δ(X) =
(
f,

∂f

∂y

)
X

+ |π−1(X)| − νφ(X).

Here ( , )X is the intersection number and νφ(X) is the multiplicity of the map φ : (x, y) → x

at the point (x, y) ∈ Sing(C).
It is easy to see that ω has no zeros in the affine part of C. Let now X = (x0, y0) ∈ C

2 be
the singular point of the curve C. Without loss of generality we put X = (0, 0). According to
theorem 3 we can factor f (x, y) into the product of irreducible factors

f = uf1 · · · fr

where u(0, 0) 
= 0 and fi , i = 1, . . . , r , are Weierstrass polynomials. Notice that
|π−1(X)| = r . Then locally C can be represented as follows:

C = C1 + · · · + Cr

where Ci = {(x, y) ∈ C
2 : |x| < ρ, |y| < ε, f (x, y) = 0}, i = 1, . . . , r are irreducible

local analytic curve components of C and ρ and ε are sufficiently small real numbers.
The parametrization of Ci , i = 1, . . . , r , near X = (0, 0) is given by

x = τ di y =
∞∑
k=1

cikτ
k cik ∈ C di = deg(fi). (18)

Puting (18) into (15) and using theorem 4 one can show that the differential ω has at the
point X a pole of multiplicity at least one. So, for the affine part of the curve C we have the
following estimate:

deg(ω)|C∩C2 � −
∑

X∈Sing(C)∩C2

|π−1(X)|. (19)

Now let us consider the points at infinity. Substituting x = 1/u, y = v/u into f (x, y) = 0
and multiplying both sides of the resulting expression by un, we obtain the equation

F(u, v) = fn(1, v) + ufn−1(1, v) + · · · + f0u
n = 0 f0 = const 
= 0

which represents the algebraic curve C near the line at infinity L∞ = {u = 0}. We can write
fn(1, v) as follows:

fn(1, v) =
q∏

i=1

(v − vi)
ni ni = 0, 1, . . . , q � n

∑
ni = n (20)
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where the points (0, vi) ∈ C ∩ L∞, i = 1, . . . , k.
Now we break (20) into the product of three factors

fn(1, v) = L1L2L3.

Here L1 = ∏r
i=1(v − v1i ), r � n contains all simple factors of (17). Near the points (0, v1i ),

i = 1, . . . , r , the curve C has the parametrization of the form

u = τ(a0i + a1iτ + O(τ )) v = v1i + τp(b0i + b1iτ + O(τ )) (21)

where τ ∈ C is a local parameter, a, b ∈ C, a0i 
= 0 and p is a positive integer.
L2 = ∏k

i=1(v − v2i )
mi , k � n contains factors of multiplicity mi > 1 such that the

corresponding points (0, v2i ) satisfy the condition ∂F
∂u

(0, v2i ) 
= 0. For arbitrary 1 � i � k we
can write the parametrization of C near (0, v2i ) as follows:

u = τmi (c0i + c1iτ + O(τ )) v = v2i + τ(e0i + e1iτ + O(τ )) c0i , e0i 
= 0. (22)

Finally, the factor L3 = ∏s
i=1(v − v3i )

li , s � n includes the multipliers of (20) for which
li > 1 and ∂F

∂u
(0, v3i ) = 0.

These points are singular and according to theorem 4 near the point (v3i , 0) we have pi > 1
local components of C; each of them can be parametrized as

u = τ kij (g0ij + g1ij τ + O(τ )) v = v3i + τ dij g0ij 
= 0 j = 1, . . . , pi (23)

where dij , kij are positive integers and
∑pi

j=1 kij � li .
In addition we have

r +
k∑

i=1

mi +
s∑

i=1

li = n and C ∩ L∞ = V1 ∪ V2 ∪ V3

Vi = {Li = 0} i = 1, 2, 3.

From (15) with the use of (21)–(23) one can show that the following estimates hold:

deg(ω)|V1 � r(m − 2), deg(ω)|V2 � (m − 1)
k∑

i=1

mi − k

deg(ω)|V3 � (m − 1)
s∑

i=1

li −
∑

X∈Sing(C)∩L∞

|π−1(X)|.

Summing we obtain

deg(ω)|C∩L∞ � n(m − 1) −
∑

X∈Sing(C)∩L∞

|π−1(X)| − k − r.

Since deg(ω) = deg(ω)|C∩L∞(ω) + deg(ω)|C∩C2(ω) in view of (16) and (19) we have the
following theorem.

Theorem 5. For an arbitrary algebraic invariant curve of the system (1) the following estimate
for the genus g holds:

2g − 2 � n(m − 1) −
∑

X∈Sing(C)

|π−1(X)|. (24)

This result seems to be a consequence of formula 1 of [2].
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5. The algebraic invariant curves with nodes

Let C be an algebraic invariant curve of the system (1) with the defining polynomial f (x, y).

Lemma 4. |Sing(C)| � m2 + n
2 .

This is a simple consequence of corollary 2 and the notation that C has at most n/2
singular points at infinity.

Theorem 6. Let there exist the integer K such that ∀ X ∈ Sing(C) we have (f,
∂f

∂y
)X � K ,

then the following estimate for the degree of the curve C holds:

n � 4 + 2m + K + ((4 + 2m + K)2 + 16Km2)1/2

4
(25)

where m is the degree of the system (1).

Proof. Using (17) and (24) one can show that

n(n − 3) −
∑

X∈Sing(C)

(
f,

∂f

∂y

)
X

� n(m − 1). (26)

By our Assumption, (f, ∂f

∂y
)X � K . According to lemma 4 we obtain immediately

∑
X∈Sing(C)

(
f,

∂f

∂y

)
X

� K
(
m2 +

n

2

)
. (27)

Puting (27) into (26) we arrive at theorem 6. �

Corollary 3. Let us suppose that all singular points of the algebraic invariant curve C are
nodes, then

n � 2(m + 1). (28)

Indeed, as a node is an ordinary double point then K = 1 and we can use the estimate (25)
which gives (28). It is interesting to compare this result with theorem 3 of [2].

Acknowledgment

The author is grateful to L Gavrilov for his attention to this paper and many useful comments.

References

[1] Campillo A and Carnicer M M 1997 Proximity inequalities and bounds for the degree of invariant curves by
foliations of P 2

C Trans. Am. Math. Soc. 349 2211–28
[2] Cerveau D and Lins Neto A 1991 Holomorphic foliations in CP(2) having an invariant algebraic curve Ann.

Inst. Fourier Grenoble 41 883–903
[3] Chavarriga J and Llibre J 1998 On the algebraic limit cycles of quadratic systems Proc. 4th Catolan Days of

Applied Mathematics (Tarragona, 1998) (Tarragona: Univ. Rovira Virgili) pp 17–24
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(Paris: Gauthiers-Villars)


